Search results for "Chemical synaptic transmission"

showing 2 items of 2 documents

Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology.

2017

Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmiss…

0301 basic medicinesomatosensory cortexReviewBiologylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineSubplatemedicinePremovement neuronal activityhumanddc:610Neurotransmitterlcsh:Neurosciences. Biological psychiatry. Neuropsychiatrydevelopmentspontaneous activityNeocortexGlutamate receptorrodentChemical synaptic transmission030104 developmental biologymedicine.anatomical_structureElectrical SynapseschemistryCerebral cortexsubplatecerebral cortexNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

2016

Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity pattern…

0301 basic medicineNeocortexNerve netCognitive NeuroscienceNeurogenesisNeuroscience (miscellaneous)Chemical synaptic transmissionBiologySensory Systems03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemSubplateSynaptic plasticitymedicineExcitatory postsynaptic potentialPremovement neuronal activityNeuroscience030217 neurology & neurosurgeryFrontiers in Neural Circuits
researchProduct